Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(11): 2147-2151, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38096174

RESUMEN

A mild and highly selective reduction of alkenes and alkynes using Mn/water is described. The highly controlled generation of H2 allows the selective reduction of these compounds in the presence of labile functional groups under mild and environmentally acceptable conditions.

2.
Dalton Trans ; 52(26): 9090-9096, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37338004

RESUMEN

The tandem isomerization-hydrosilylation reaction is a highly valuable process able to transform mixtures of internal olefins into linear silanes. Unsaturated and cationic hydrido-silyl-Rh(III) complexes have proven to be effective catalysts for this reaction. Herein, three silicon-based bidentate ligands, 8-(dimethylsilyl)quinoline (L1), 8-(dimethylsilyl)-2-methylquinoline (L2) and 4-(dimethylsilyl)-9-phenylacridine (L3), have been used to synthesize three neutral [RhCl(H)(L)PPh3] (1-L1, 1-L2 and 1-L3) and three cationic [Rh(H)(L)(PPh3)2][BArF4] (2-L1, 2-L2 and 2-L3) Rh(III) complexes. Among the neutral compounds, 1-L2 could be characterized in the solid state by X-ray diffraction showing a distorted trigonal bipyramidal structure. Neutral complexes (1-L1, 1-L2 and 1-L3) failed to catalyze the hydrosilylation of olefins. On the other hand, the cationic compound 2-L2 was also characterized by X-ray diffraction showing a square pyramidal structure. The unsaturated and cationic Rh(III) complexes 2-L1, 2-L2 and 2-L3 showed significant catalytic activity in the hydrosilylation of remote alkenes, with the most sterically hindered (2-L2) being the most active one.

3.
Inorg Chem ; 62(7): 3095-3105, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36757389

RESUMEN

Siloxanes and silanols containing Si-H units are important building blocks for the synthesis of functionalized siloxane materials, and their synthesis is a current challenge. Herein, we report the selective synthesis of hydrosilanols, hydrosiloxanes, and silanodiols depending on the nature of the catalysts and the silane used. Two neutral ({MCl[SiMe2(o-C6H4PPh2)]2}; M = Rh, Ir) and two cationic ({M[SiMe2(o-C6H4PPh2)]2(NCMe)}[BArF4]; M = Rh, Ir) have been synthesized and their catalytic behavior toward hydrolysis of secondary silanes has been described. Using the iridium complexes as precatalysts and diphenylsilane as a substrate, the product obtained is diphenylsilanediol. When rhodium complexes are used as precatalysts, it is possible to selectively obtain silanediol, hydrosilanol, and hydrosiloxane depending on the catalysts (neutral or cationic) and the silane substituents.

4.
Angew Chem Int Ed Engl ; 61(36): e202204558, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35833924

RESUMEN

An unprecedented quantum tunneling effect has been observed in catalytic Si-H bond activations at room temperature. The cationic hydrido-silyl-iridium(III) complex, {Ir[SiMe(o-C6 H4 SMe)2 ](H)(PPh3 )(THF)}[BArF 4 ], has proven to be a highly efficient catalyst for the hydrolysis and the alcoholysis of organosilanes. When triethylsilane was used as a substrate, the system revealed the largest kinetic isotopic effect (KIESi-H/Si-D =346±4) ever reported for this type of reaction. This unexpectedly high KIE, measured at room temperature, together with the calculated Arrhenius preexponential factor ratio (AH /AD =0.0004) and difference in the observed activation energy [(E a D -E a H )=34.07 kJ mol-1 ] are consistent with the participation of quantum tunneling in the catalytic process. DFT calculations have been used to unravel the reaction pathway and identify the rate-determining step. Aditionally, isotopic effects were considered by different methods, and tunneling effects have been calculated to be crucial in the process.

5.
Dalton Trans ; 48(10): 3300-3313, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30778458

RESUMEN

The reaction of [RhCl(COD)]2 (COD = 1,5-cyclooctadiene) with racemic PPh2(CH(Ph)CH2CHO) and pyridine (py) led to the oxidative addition of the aldehyde, and a single geometric isomer of [RhHCl(PPh2(CH(Ph)CH2CO))(py)2] (1), with hydride trans to chloride, was obtained as a mixture of two diastereomers in a 95 : 5 ratio; this was in agreement with density functional theory (DFT) calculations. In a chloroform solution, the exchange of hydride by chloride yielded [RhCl2(PPh2(CH(Ph)CH2CO))(py)2] (2) as a mixture of a kinetically preferred species, trans-py-2a, and two diastereomers, cis-Cl-2b' and cis-Cl-2b, with cis pyridines and a chloride trans to acyl; as predicted by the DFT calculations, the latter was the major species. Complex 1 reacted with racemic PPh2(CH(Ph)CH2CHO) or PPh2(o-C6H4CHO) to afford [RhHCl(PPh2(CH(Ph)CH2CO))(κ1-PPh2(CH(Ph)CH2CHO))(py)] (3) or [RhHCl(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))(py)] (4), respectively, both with a dangling alkylaldehyde. Diastereomeric mixtures with the ratios 3a/3a' = 80 : 20 and 4a/4a' = 50 : 50 were obtained. Complex 4 reacted with N-donors to afford cationic [RhH(NN)(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))]BPh4 (NN = 1,10-phenanthroline, 5; 2,2'-bipyridine, 6) or with 8-aminoquinoline (aqui) or 2-(aminomethyl)pyridine to yield imination products with terdentate ligands: [RhH(PPh2(o-C6H4CO))(κ3-PNN)]BF4 (PNN = PPh2(CH(Ph)CH2CNC9H6N), 7 and PPh2(CH(Ph)CH2CNCH2C5H4N), 8, respectively. Compounds 5-8 were obtained as equimolar a/a' mixtures of diastereomers. Moreover, 5a and 5a' could be separated. [RhCl(NBD)]2 reacted with racemic PPh2(CH(Ph)CH2CHO) and N-donors to provide nortricyclyl (Ntyl) derivatives [RhCl(NN)(Ntyl)(PPh2CH(Ph)CH2CO)] (NN = phen, 9 and bipy, 10) as an a/a' = 75 : 25 mixture of diastereomers. By reacting [RhCl(NBD)]2 with PPh2(CH(Ph)CH2CHO) and quinoline-8-carbaldehyde in methanol, the phosphino-ester complex [RhCl(Ntyl)(C9H6NCO)(κ2-PPh2CH(Ph)CH2CO(OCH3)] 11 was obtained. The initial equimolar mixture of two diastereomers readily transformed into a single diastereomer, which was found to be thermodynamically most stable by the DFT calculations. Furthermore, single crystal X-ray diffraction analysis of cis-Cl-2b, 5a, 7a, 10a and 11 is reported.

6.
Inorg Chem ; 55(20): 10284-10293, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27689907

RESUMEN

Unprecedented metallapyrazoles [IrH2{Ph2P(o-C6H4)CNNHC(o-C6H4)PPh2}] (3) and [IrHCl{Ph2P(o-C6H4)CNNHC(o-C6H4)PPh2}] (4) were obtained by the reaction of the irida-ß-ketoimine [IrHCl{(PPh2(o-C6H4CO))(PPh2(o-C6H4CNNH2))H}] (2) in MeOH heated at reflux in the presence and absence of KOH, respectively. In solution, iridapyrazole 3 undergoes a dynamic process due to prototropic tautomerism with an experimental barrier for the exchange of ΔGcoal⧧ = 53.7 kJ mol-1. DFT calculations agreed with an intrapyrazole proton transfer process assisted by two water molecules (ΔG = 63.1 kJ mol-1). An X-ray diffraction study on 4 indicated electron delocalization in the iridapyrazole ring. The reaction of the irida-ß-diketone [IrHCl{(PPh2(o-C6H4CO))2H}] (1) with H2NNRR' in aprotic solvents gave irida-ß-ketoimines [IrHCl{(PPh2(o-C6H4CO))(PPh2(o-C6H4CNNRR'))H}] (R = R' = Me (5); R = H, R' = Ph (8)), which can undergo N-N bond cleavage to afford the acyl-amide complex [IrHCl(PPh2(o-C6H4CO))(PPh2(o-C6H4C(O)N(CH3)2))-κP,κO] (6) or [IrHCl(PPh2(o-C6H4CO))(PPh2(o-C6H4CN)-κP)(NH2NHPh-κNH2)] (9) containing o-(diphenylphosphine)benzonitrile and phenylhydrazine, respectively. From a CH2Cl2/CH3OH solution of 9 kept at -18 °C, single crystals of [IrHCl(PPh2(o-C6H4CO))(PPh2(o-C6H4CN)-κP))(HN═NPh-κNH)] (10) containing o-(diphenylphosphine)benzonitrile and phenyldiazene were formed, as shown by X-ray diffraction. The reaction of 1 with methylhydrazine in methanol gave the hydrazine complex [IrCl(PPh2(o-C6H4CO))2(NH2NH(CH3)-κNH2)] (7). Single-crystal X-ray diffraction analysis was performed on 6 and 7.

7.
Chemistry ; 22(48): 17160-17164, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27717047

RESUMEN

4,4'-Disubstituted-2,2'-bipyridine ligands coordinated to MoII and ReI cationic fragments become dearomatized by an intramolecular nucleophilic attack from a deprotonated N-alkylimidazole ligand in cis disposition. The subsequent protonation of these neutral complexes takes place on a pyridine carbon atom rather than at nitrogen, weakening an aromatic C-C bond and affording a dihydropyridyl moiety. Computational calculations allowed for the rationalization of the formation of the experimentally obtained products over other plausible alternatives.

8.
J Am Chem Soc ; 137(24): 7718-27, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26034996

RESUMEN

Air-stable and homogeneous gold nanoparticles (AuNPs, 1a-5a) ligated by various secondary phosphine oxides (SPOs), [R(1)R(2)P(O)H] (R(1) = Naph, R(2) = (t)Bu, L1; R(1) = R(2) = Ph, L2; R(1) = Ph, R(2) = Naph, L3; R(1) = R(2) = Et, L4; R(1) = R(2) = Cy, L5; R(1) = R(2) = (t)Bu, L6), with different electronic and steric properties were synthesized via NaBH4 reduction of the corresponding Au(I)-SPO complex. These easily accessible ligands allow the formation of well dispersed and small nanoparticles (size 1.2-2.2 nm), which were characterized by the use of a wide variety of techniques, such as transmission electron microscopy, thermogravimetric analysis, UV-vis, energy-dispersive X-ray, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), and cross polarization magic angle spinning (CP MAS) NMR spectroscopy. A pronounced ligand effect was found, and CP MAS NMR experiments enabled us to probe important differences in the polarity of the P-O bond of the SPOs coordinated to the nanoparticle surface depending on the type of substituents in the ligand. AuNPs containing aryl SPOs carry only SPO anions and are highly selective for aldehyde hydrogenation. AuNPs of similar size made with alkyl SPOs contain also SPOH, hydrogen bonded to SPO anions. As a consequence they contain less Au(I) and more Au(0), as is also evidenced by XPS. They are less selective and active in aldehyde hydrogenation and now show the typical activity of Au(0)NPs in nitro group hydrogenation.

9.
Chemistry ; 20(49): 16121-7, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25284300

RESUMEN

The reaction of [CuI(HSC6 H4 PPh2 )]2 with NaBH4 in CH2 Cl2 /EtOH led to air- and moisture-stable copper hydride nanoparticles (CuNPs) containing phosphinothiolates as new ligands, one of which was isolated by crystallization. The X-ray crystal structure of [Cu18 H7 L10 I] (L=(-) S(C6 H4 )PPh2 ) shows unprecedented features in its 28-atom framework (18 Cu and 10 S atoms). Seven hydrogen atoms, in hydride form, are needed for charge balance and were located by density functional theory methods. H2 was released from the copper hydride nanoparticles by thermolysis and visible light irradiation.

10.
Inorg Chem ; 53(7): 3716-29, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24617924

RESUMEN

The electronic and steric effects in the stoichiometric dehydrocoupling of secondary and primary phosphine-boranes H3B·PR2H [R = 3,5-(CF3)2C6H3; p-(CF3)C6H4; p-(OMe)C6H4; adamantyl, Ad] and H3B·PCyH2 to form the metal-bound linear diboraphosphines H3B·PR2BH2·PR2H and H3B·PRHBH2·PRH2, respectively, are reported. Reaction of [Rh(L)(η(6)-FC6H5)][BAr(F)4] [L = Ph2P(CH2)3PPh2, Ar(F) = 3,5-(CF3)2C6H3] with 2 equiv of H3B·PR2H affords [Rh(L)(H)(σ,η-PR2BH3)(η(1)-H3B·PR2H)][BAr(F)4]. These complexes undergo dehydrocoupling to give the diboraphosphine complexes [Rh(L)(H)(σ,η(2)-PR2·BH2PR2·BH3)][BAr(F)4]. With electron-withdrawing groups on the phosphine-borane there is the parallel formation of the products of B-P cleavage, [Rh(L)(PR2H)2][BAr(F)4], while with electron-donating groups no parallel product is formed. For the bulky, electron rich, H3B·P(Ad)2H no dehydrocoupling is observed, but an intermediate Rh(I) σ phosphine-borane complex is formed, [Rh(L){η(2)-H3B·P(Ad)2H}][BAr(F)4], that undergoes B-P bond cleavage to give [Rh(L){η(1)-H3B·P(Ad)2H}{P(Ad)2H}][BAr(F)4]. The relative rates of dehydrocoupling of H3B·PR2H (R = aryl) show that increasingly electron-withdrawing substituents result in faster dehydrocoupling, but also suffer from the formation of the parallel product resulting from P-B bond cleavage. H3B·PCyH2 undergoes a similar dehydrocoupling process, and gives a mixture of stereoisomers of the resulting metal-bound diboraphosphine that arise from activation of the prochiral P-H bonds, with one stereoisomer favored. This diastereomeric mixture may also be biased by use of a chiral phosphine ligand. The selectivity and efficiencies of resulting catalytic dehydrocoupling processes are also briefly discussed.

11.
Chemistry ; 19(39): 12974-7, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24038657

RESUMEN

Ligand activation: Deprotonation of the nitrile or isonitrile complexes [Re(CO)3(N-RIm)2(L)](+) (N-RIm = N-alkylimidazole; L = N≡CtBu, C≡NtBu) selectively afforded alkylidenamido or iminoacyl derivatives, respectively, in which C-C coupling has occurred. Protonation of the latter complex leads to aminocarbene products.

12.
Dalton Trans ; 42(36): 12917-25, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23715206

RESUMEN

The synthesis of a range of bis(phosphine)boronium salts is reported [(R2HP)2BH2][X] (R = Ph, (t)Bu, Cy) in which the counter anion is also varied (X(-) = Br(-), [OTf](-), [BAr(F)4](-), Ar(F) = 3,5-(CF3)2C6H3). Characterization in the solid-state by X-ray diffraction suggests there are weak hydrogen bonds between the PH units of the boronium cation and the anion (X(-) = Br(-), [OTf](-)), while solution NMR spectroscopy also reveals hydrogen bonding occurs in the order [BAr(F)4](-) < [OTf](-) < Br(-). [(Ph2HP)2BH2][BAr(F)4] reacts with RhH(PPh3)3, by elimination of H2, forming [Rh(κ(1),η-PPh2BH2·PPh2H)(PPh3)2][BAr(F)4] which shows a ß-B-agostic interaction from the resulting base stabilised phosphino-borane ligand. Alternatively such ligands can be assembled directly on the metal centre by reaction of in situ generated {Rh(PPh3)3}(+) and Ph2HP·BH3 to afford [Rh(κ(1),η-PPh2BH2·PPh3)(PPh3)2][BAr(F)4], which was characterised by X-ray crystallography. Addition of H3B·PPh2H to the well-defined 16-electron "T-shaped" complex [Rh(P(i)Bu3)2(PPh3)][BAr(F)4] (characterised by X-ray crystallography) formed of a mixture of base-stabilised phosphino borane ligated complexes [Rh(κ(1),η-PR2BH2·PR3)(PR3)2][BAr(F)4] (R = (i)Bu or Ph). These last observations may lend clues to the formation of bis(phosphine)boronium salts in the catalytic dehydrocoupling reaction of phosphine boranes as mediated by Rh(I) compounds.

13.
Inorg Chem ; 52(8): 4509-16, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23544802

RESUMEN

The Rh(III) species Rh(PCy3)2H2Cl is an effective catalyst (2 mol %, 298 K) for the dehydrogenation of H3B·NMe2H (0.072 M in 1,2-F2C6H4 solvent) to ultimately afford the dimeric aminoborane [H2BNMe2]2. Mechanistic studies on the early stages in the consumption of H3B·NMe2H, using initial rate and H/D exchange experiments, indicate possible dehydrogenation mechanisms that invoke turnover-limiting N-H activation, which either precedes or follows B-H activation, to form H2B═NMe2, which then dimerizes to give [H2BNMe2]2. An additional detail is that the active catalyst Rh(PCy3)2H2Cl is in rapid equilibrium with an inactive dimeric species, [Rh(PCy3)H2Cl]2. The reaction of Rh(PCy3)2H2Cl with [Rh(PCy3)H2(H2)2][BAr(F)4] forms the halide-bridged adduct [Rh(PCy3)2H2(µ-Cl)H2(PCy3)2Rh][BAr(F)4] (Ar(F) = 3,5-(CF3)2C6H3), which has been crystallographically characterized. This dinuclear cation dissociates on addition of H3B·NMe2H to re-form Rh(PCy3)2H2Cl and generate [Rh(PCy3)2H2(η(2)-H3B·NMe2H)][BAr(F)4]. The fate of the catalyst at low catalyst loadings (0.5 mol %) is also addressed, with the formation of an inactive borohydride species, Rh(PCy3)2H2(η(2)-H2BH2), observed. On addition of H3B·NMe2H to Ir(PCy3)2H2Cl, the Ir congener Ir(PCy3)2H2(η(2)-H2BH2) is formed, with concomitant generation of the salt [H2B(NMe2H)2]Cl.

14.
J Am Chem Soc ; 134(50): 20326-9, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23205724

RESUMEN

Rhenium tricarbonyl complexes with three N-heterocyclic ligands (N-alkylimidazoles or pyridines) undergo deprotonation with KN(SiMe(3))(2) and then oxidation with AgOTf to afford complexes with pyridylimidazole or bipyridine bidentate ligands resulting from deprotonation, C-C coupling and rearomatization.


Asunto(s)
Carbono/química , Imidazoles/química , Piridinas/química , Compuestos Heterocíclicos/química , Ligandos , Modelos Moleculares , Estructura Molecular
15.
Chemistry ; 18(31): 9530-3, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22740287
16.
Chem Commun (Camb) ; 48(57): 7185-7, 2012 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-22662328

RESUMEN

Active species, product distributions and a suggested catalytic cycle are reported for the dehydrocoupling of the phosphine-borane H(3)B·P(t)Bu(2)H to give HP(t)Bu(2)BH(2)P(t)Bu(2)BH(3) using the [Rh(COD)(2)][BAr(F)(4)] pre-catalyst.

17.
Chemistry ; 17(31): 8584-95, 2011 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-21728200

RESUMEN

Both manganese and rhenium complexes of the type [M(bipy)(CO)(3)(N-RIm)](+) (bipy=2,2'-bipyridine) undergo deprotonation of the central CH group of the N-alkylimidazole (N-RIm) ligand when treated with a strong base. However, the outcome of the reaction is very different for either metal. For Mn, the addition of the equimolar amount of an acid to the product of the deprotonation affords an N-heterocyclic carbene (NHC) complex, whereas for Re, once the deprotonation of the central imidazole CH group has occurred, the bipy ligand undergoes a nucleophilic attack on an ortho carbon, affording the C-C coupling product. The extension of these studies to pseudo-octahedral [Mo(η(3)-allyl)(bipy)(CO)(2)(N-RIm)](+) complexes has allowed us to isolate cationic NHC complexes (Mn(I)-type behavior), as well as their neutral imidazol-2-yl precursors. Theoretical studies of the reaction mechanisms using DFT computations were carried out on the deprotonation of [Mn(bipy)(CO)(3)(N-PhIm)](+), [Re(bipy)(CO)(3) (N-MesIm)](+), and [Mo(η(3)-C(4)H(7))(bipy)(CO)(2) (N-MesIm)](+) complexes (Mes=mesityl) at the B3LYP/6-31G(d) (LANL2DZ for Mn, Re, and Mo) level of theory. Our results explain why different products have been found experimentally for Mn, Mo, and Re complexes. For Re, the process leading to a C-C coupling product is clearly more favored than those forming an imidazol-2-yl product. In contrast, for Mn and Mo complexes, the lower stabilizing interaction between the central imidazole and ortho bipy C atoms, along with the higher lability of the ligands, make the formation of an NHC-type product kinetically more accessible, in good agreement with experimental findings.

18.
Inorg Chem ; 49(20): 9527-34, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20849127

RESUMEN

Compounds [Re(bipy)(CO)(3)(HIm)]OTf (1) and [Mo(η(3)-C(3)H(4)-R-2)(CO)(2)(HIm)(phen)]BAr'(4) [R = Me (2a), H (2b); Ar' = 3,5-bis(trifluoromethyl)phenyl; HIm = 1H-imidazole] were prepared from 1H-imidazole and either [Re(OTf)(bipy)(CO)(3)] or [MoCl(η(3)-C(3)H(4)-R-2)(CO)(2)(phen)]. Compounds 1, 2a, and 2b were deprotonated to afford the terminal κ-N-imidazolate complexes [Re(bipy)(CO)(3)(Im)] (3) and [Mo(η(3)-C(3)H(4)-R-2)(CO)(2)(Im)(phen)] [R = Me (4a), H (4b)], which were fully characterized, including an X-ray structural determination of 3. The topological analysis of the electron density (obtained from the X-ray diffraction study) and its Laplacian were used to characterize the differences in the electron density at the five-membered ring ligand between the imidazole and imidazolate complexes 1 and 3. The reaction of complexes 3, 4a, and 4b with the appropriate organometallic complexes afforded the bimetallic imidazolate-bridged compounds [{Re(bipy)(CO)(3)}(2)(µ-Im)]OTf (5), [{Mo(η(3)-C(4)H(7))(CO)(2)(phen)}(2)(µ-Im)]OTf (6), and [{Mo(η(3)-C(3)H(5))(CO)(2)(phen)}(µ-Im){Re(phen)(CO)(3)}]OTf (7). The reaction of [Mo(η(3)-C(4)H(7))(CO)(2)(Im)(phen)] (4a) with SnClPh(3) led to the formation of the trinuclear complex [{Mo(η(3)-C(4)H(7))(CO)(2)(phen)(µ-Im)}(2){SnPh(3)}]BAr'(4) (8).

20.
Chemistry ; 16(28): 8495-507, 2010 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-20572178

RESUMEN

Complexes [Re(CO)(3)(N-RIm)(3)]OTf (N-RIm=N-alkylimidazole, OTf=trifluoromethanesulfonate; 1a-d) have been straightforwardly synthesised from [Re(OTf)(CO)(5)] and the appropriate N-alkylimidazole. The reaction of compounds 1a-d with the strong base KN(SiMe(3))(2) led to deprotonation of a central C-H group of an imidazole ligand, thus affording very highly reactive derivatives. The latter can evolve through two different pathways, depending on the nature of the substituents of the imidazole ligands. Compound 1a contains three N-MeIm ligands, and its product 2a features a C-bound imidazol-2-yl ligand. When 2a is treated with HOTf or MeOTf, rhenium N-heterocyclic carbenes (NHCs) 3a or 4a are afforded as a result of the protonation or methylation, respectively, of the non-coordinated N atom. The reaction of 2a with [AuCl(PPh(3))] led to the heterobimetallic compound 5, in which the N-heterocyclic ligand is once again N-bound to the Re atom and C-coordinated to the gold fragment. For compounds 1b-d, with at least one N-arylimidazole ligand, deprotonation led to an unprecedented reactivity pattern: the carbanion generated by the deprotonation of the C2-H group of an imidazole ligand attacks a central C-H group of a neighbouring N-RIm ligand, thus affording the product of C-C coupling and ring-opening of the imidazole moiety that has been attacked (2c, d). The new complexes featured an amido-type N atom that can be protonated or methylated, thus obtaining compounds 3c, d or 4c, d, respectively. The latter reaction forces a change in the disposition of the olefinic unit generated by the ring-opening of the N-RIm ligand from a cisoid to a transoid geometry. Theoretical calculations help to rationalise the experimental observation of ring-opening (when at least one of the substituents of the imidazole ligands is an aryl group) or tautomerisation of the N-heterocyclic ligand to afford the imidazol-2-yl product.


Asunto(s)
Alquenos/química , Aminas/química , Imidazoles/química , Metano/análogos & derivados , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Renio/química , Cristalografía por Rayos X , Ligandos , Metano/síntesis química , Metano/química , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...